e-space
Manchester Metropolitan University's Research Repository

    Proteomic analysis of an induced pluripotent stem cell model reveals strategies to treat juvenile myelomonocytic leukemia

    Pearson, Stella, Guo, Baoqiang ORCID logoORCID: https://orcid.org/0000-0002-5469-4621, Pierce, Andrew, Azadbakht, Narges, Brazzatti, Julie A, Patassini, Stefano, Mulero-Navarro, Stefano, Meyer, Stefan, Flotho, Christian, Gelb, Bruce D and Whetton, Anthony D (2020) Proteomic analysis of an induced pluripotent stem cell model reveals strategies to treat juvenile myelomonocytic leukemia. Journal of Proteome Research, 19 (1). pp. 194-203. ISSN 1535-3893

    [img]
    Preview
    Published Version
    Available under License Creative Commons Attribution.

    Download (4MB) | Preview

    Abstract

    Juvenile myelomonocytic leukemia (JMML) is an aggressive myeloproliferative neoplasm of early childhood with a poor survival rate, thus there is a requirement for improved treatment strategies. Induced pluripotent stem cells offer the ability to model disease and develop new treatment strategies. JMML is frequently associated with mutations in PTPN11. Children with Noonan syndrome, a development disorder, have an increased incidence of JMML associated with specific germline mutations in PTPN11. We undertook a proteomic assessment of myeloid cells derived from induced pluripotent stem cells obtained from Noonan syndrome patients with PTPN11 mutations, either associated or not associated with an increased incidence of JMML. We report that the proteomic perturbations induced by the leukemia-associated PTPN11 mutations are associated with TP53 and NF-Kκb signaling. We have previously shown that MYC is involved in the differential gene expression observed in Noonan syndrome patients associated with an increased incidence of JMML. Thus, we employed drugs to target these pathways and demonstrate differential effects on clonogenic hematopoietic cells derived from Noonan syndrome patients, who develop JMML and those who do not. Further, we demonstrated these small molecular inhibitors, JQ1 and CBL0137, preferentially extinguish primitive hematopoietic cells from sporadic JMML patients as opposed to cells from healthy individuals.

    Impact and Reach

    Statistics

    Activity Overview
    6 month trend
    107Downloads
    6 month trend
    37Hits

    Additional statistics for this dataset are available via IRStats2.

    Altmetric

    Repository staff only

    Edit record Edit record