Wyckelsma, VL, Venckunas, T, Brazaitis, M, Gastaldello, S, Snieckus, A, Eimantas, N, Baranauskiene, N, Subocius, A, Skurvydas, A, Pääsuke, M, Gapeyeva, H, Kaasik, P, Pääsuke, R, Jürimäe, J, Graf, BA, Kayser, B, Place, N, Andersson, DC, Kamandulis, S and Westerblad, H (2020) Vitamin C and E treatment blunts sprint interval training–induced changes in inflammatory mediator-, calcium-, and mitochondria-related signaling in recreationally active elderly humans. Antioxidants, 9 (9). pp. 1-20.
|
Published Version
Available under License Creative Commons Attribution. Download (3MB) | Preview |
Abstract
Sprint interval training (SIT) has emerged as a time-efficient training regimen for young individuals. Here, we studied whether SIT is effective also in elderly individuals and whether the training response was affected by treatment with the antioxidants vitamin C and E. Recreationally active elderly (mean age 65) men received either vitamin C (1 g/day) and vitamin E (235 mg/day) or placebo. Training consisted of nine SIT sessions (three sessions/week for three weeks of 4–6 repetitions of 30-s all-out cycling sprints) interposed by 4 min rest. Vastus lateralis muscle biopsies were taken before, 1 h after, and 24 h after the first and last SIT sessions. At the end of the three weeks of training, SIT-induced changes in relative mRNA expression of reactive oxygen/nitrogen species (ROS)and mitochondria-related proteins, inflammatory mediators, and the sarcoplasmic reticulum Ca2+ channel, the ryanodine receptor 1 (RyR1), were blunted in the vitamin treated group. Western blots frequently showed a major (>50%) decrease in the full-length expression of RyR1 24 h after SIT sessions; in the trained state, vitamin treatment seemed to provide protection against this severe RyR1 modification. Power at exhaustion during an incremental cycling test was increased by ~5% at the end of the training period, whereas maximal oxygen uptake remained unchanged; vitamin treatment did not affect these measures. In conclusion, treatment with the antioxidants vitamin C and E blunts SIT-induced cellular signaling in skeletal muscle of elderly individuals, while the present training regimen was too short or too intense for the changes in signaling to be translated into a clear-cut change in physical performance.
Impact and Reach
Statistics
Additional statistics for this dataset are available via IRStats2.