e-space
Manchester Metropolitan University's Research Repository

    Quantum annealing for vehicle routing and scheduling problems

    Syrichas, Alex (2019) Quantum annealing for vehicle routing and scheduling problems. Doctoral thesis (PhD), Manchester Metropolitan University.

    [img]
    Preview

    Available under License Creative Commons Attribution Non-commercial No Derivatives.

    Download (11MB) | Preview

    Abstract

    Metaheuristic approaches to solving combinatorial optimization problems have many attractions. They sidestep the issue of combinatorial explosion; they return good results; they are often conceptually simple and straight forward to implement. There are also shortcomings. Optimal solutions are not guaranteed; choosing the metaheuristic which best fits a problem is a matter of experimentation; and conceptual differences between metaheuristics make absolute comparisons of performance difficult. There is also the difficulty of configuration of the algorithm - the process of identifying precise values for the parameters which control the optimization process. Quantum annealing is a metaheuristic which is the quantum counterpart of the well known classical Simulated Annealing algorithm for combinatorial optimization problems. This research investigates the application of quantum annealing to the Vehicle Routing Problem, a difficult problem of practical significance within industries such as logistics and workforce scheduling. The work devises spin encoding schemes for routing and scheduling problem domains, enabling an effective quantum annealing algorithm which locates new solutions to widely used benchmarks. The performance of the metaheuristic is further improved by the development of an enhanced tuning approach using fitness clouds as behaviour models. The algorithm is shown to be further enhanced by taking advantage of multiprocessor environments, using threading techniques to parallelize the optimization workload. The work also shows quantum annealing applied successfully in an industrial setting to generate solutions to complex scheduling problems, results which created extra savings over an incumbent optimization technique. Components of the intellectual property rendered in this latter effort went on to secure a patent-protected status.

    Impact and Reach

    Statistics

    Activity Overview
    6 month trend
    336Downloads
    6 month trend
    296Hits

    Additional statistics for this dataset are available via IRStats2.

    Actions (login required)

    View Item View Item