e-space
Manchester Metropolitan University's Research Repository

    Fluid dynamics analysis of sloshing pressure distribution in storage vessels of different shapes

    Xue, MA, Chen, Y, Zheng, J, Qian, L ORCID logoORCID: https://orcid.org/0000-0002-9716-2342 and Yuan, X (2019) Fluid dynamics analysis of sloshing pressure distribution in storage vessels of different shapes. Ocean Engineering, 192. p. 106582. ISSN 0029-8018

    [img]
    Preview
    Accepted Version
    Download (3MB) | Preview

    Abstract

    © 2019 Elsevier Ltd A series of numerical simulations were performed to investigate the influences of storage vessels shapes on sloshing dynamics under horizontal excitation by employing the open source code OpenFOAM, which has been extensively validated by experimental data for the sloshing flow problem. The results show that the membrane liquefied natural gas (LNG) tanks are subject to lower impact pressure than the cylindrical, rectangular and spherical tanks with the same volume of liquid and the overall tank dimensions, as the slope at the storage vessels bottom changes the flow direction of the liquid and therefore reduces the impact on the vertical wall. In the cylindrical and spherical tanks, higher impact pressure was found on the wall directly opposite to the excitation direction and the maximum impact point will shift away from the external excitation direction as the wave breaks up violently until a quasi-steady state of the sloshing wave rotating along the side wall is reached. The curved surface of the spherical tank could also help reduce the impact pressure when compared with the cylindrical tank.

    Impact and Reach

    Statistics

    Activity Overview
    6 month trend
    365Downloads
    6 month trend
    250Hits

    Additional statistics for this dataset are available via IRStats2.

    Altmetric

    Actions (login required)

    View Item View Item