e-space
Manchester Metropolitan University's Research Repository

    Intercomparison of radiative forcing calculations of stratospheric water vapour and contrails

    Myhre, Gunnar, Kvalevåg, Maria, Rädel, Gaby, Cook, Jolene, Shine, Keith P., Clark, Hannah, Karcher, Fernand, Markowicz, Krzysztof, Kardas, Aleksandra, Wolkenberg, Paulina, Balkanski, Yves, Ponater, Michael, Forster, Piers, Rap, Alexandru and De Leon, Ruben Rodriquez (2009) Intercomparison of radiative forcing calculations of stratospheric water vapour and contrails. Meteorologische zeitschrift, 18 (6). pp. 585-596. ISSN 0941-2948

    File not available for download.

    Abstract

    Seven groups have participated in an intercomparison study of calculations of radiative forcing (RF) due to stratospheric water vapour (SWV) and contrails. A combination of detailed radiative transfer schemes and codes for global-scale calculations have been used, as well as a combination of idealized simulations and more realistic global-scale changes in stratospheric water vapour and contrails. Detailed line-by-line codes agree within about 15 % for longwave (LW) and shortwave (SW) RF, except in one case where the difference is 30 %. Since the LW and SW RF due to contrails and SWV changes are of opposite sign, the differences between the models seen in the individual LW and SW components can be either compensated or strengthened in the net RF, and thus in relative terms uncertainties are much larger for the net RF. Some of the models used for global-scale simulations of changes in SWV and contrails differ substantially in RF from the more detailed radiative transfer schemes. For the global-scale calculations we use a method of weighting the results to calculate a best estimate based on their performance compared to the more detailed radiative transfer schemes in the idealized simulations.

    Impact and Reach

    Statistics

    Activity Overview
    6 month trend
    0Downloads
    6 month trend
    429Hits

    Additional statistics for this dataset are available via IRStats2.

    Altmetric

    Actions (login required)

    View Item View Item