Ismail, Muhammad, Qadir, Hamza, Khan, Farrukh Aslam ORCID: https://orcid.org/0000-0002-7023-7172, Jan, Sadeeq, Wadud, Zahid and Bashir, Ali Kashif ORCID: https://orcid.org/0000-0003-2601-9327 (2023) A novel routing protocol for underwater wireless sensor networks based on shifted energy efficiency and priority. Computer Communications, 210. pp. 147-162. ISSN 0140-3664
|
Published Version
Available under License Creative Commons Attribution Non-commercial No Derivatives. Download (1MB) | Preview |
Abstract
Underwater Wireless Sensor Networks (UWSNs) are among the most promising research areas these days due to their unique characteristics and diverse underwater applications. Though a number of routing protocols have been designed and implemented for UWSNs over the past few years, the researchers face several challenges, e.g., low speed of propagation, small bandwidth, limited battery power, etc., while designing routing protocols for communication in UWSNs. Acoustic sensor nodes are equipped with batteries with limited power and it is quite costly to replace or recharge them. The network will not survive for the desired period of time if the power of node batteries is not efficiently used. To effectively resolve this issue, this paper proposes a Shifted Energy Efficiency and Priority (SHEEP) routing protocol for UWSNs. The proposed protocol aims to enhance the efficiency of the state-of-the-art Energy Balanced Efficient and Reliable Routing (EBER2) protocol for UWSNs. SHEEP is built upon the depth and energy of the current forwarding node, the depth of the expected next forwarding node, and the average energy difference among the expected forwarders. Simulation results demonstrate that SHEEP improves the energy efficiency and packet delivery ratio in comparison to EBER2 by 7.4% and 13% respectively.
Impact and Reach
Statistics
Additional statistics for this dataset are available via IRStats2.