e-space
Manchester Metropolitan University's Research Repository

    Thermal conductivity of binary ceramic composites made of insulating and conducting materials comprising full composition range – applied to yttria partially stabilized zirconia and molybdenum disilicide

    Cernuschi, Federico, Kulczyk-Malecka, Justyna ORCID logoORCID: https://orcid.org/0000-0002-4905-3635, Zhang, Xun, Nozahic, Franck, Estournès, Claude and Sloof, Willem G (2023) Thermal conductivity of binary ceramic composites made of insulating and conducting materials comprising full composition range – applied to yttria partially stabilized zirconia and molybdenum disilicide. Journal of the European Ceramic Society, 43 (14). pp. 6296-6307. ISSN 0955-2219

    [img]
    Preview
    Published Version
    Available under License Creative Commons Attribution.

    Download (15MB) | Preview

    Abstract

    The thermal diffusivity and conductivity of dense and porous binary composites having an insulating and conducting phase were studied across its entire composition range. Experimental evaluation has been performed with MoSi2 particles embedded into yttria partially stabilized zirconia (YPSZ) as prepared by spark plasma sintering (SPS). The thermal diffusivity of the composites was measured with Flash Thermography (FT) and Laser Flash Analysis (LFA) techniques. Subsequently, the thermal conductivity was determined with the measured heat capacity and density of the composites. The actual volume fraction of the conducting phase of the composites was determined with image analysis of X-ray maps recorded with scanning electron microscopy (SEM). The phases present and their density were determined with X-ray diffractometry (XRD) using Rietveld refinement. The thermal diffusivity increases with increasing volume fraction of MoSi2. Porosity reduces the thermal diffusivity, but the effect diminishes with high volume fractions MoSi2. The thermal diffusivity as a function of the MoSi2 volume fraction of the YPSZ composites is captured by modelling, which includes the porosity effect and the high conductivity paths due to the percolation of the conductive phase.

    Impact and Reach

    Statistics

    Activity Overview
    6 month trend
    10Downloads
    6 month trend
    16Hits

    Additional statistics for this dataset are available via IRStats2.

    Altmetric

    Actions (login required)

    View Item View Item