e-space
Manchester Metropolitan University's Research Repository

    Detecting COVID-19 from Chest X-rays Using Convolutional Neural Network Ensembles

    El Lel, Tarik, Ahsan, Mominul and Haider, Julfikar ORCID logoORCID: https://orcid.org/0000-0001-7010-8285 (2023) Detecting COVID-19 from Chest X-rays Using Convolutional Neural Network Ensembles. Computers, 12 (5). p. 105.

    [img]
    Preview
    Published Version
    Available under License Creative Commons Attribution.

    Download (1MB) | Preview

    Abstract

    Starting in late 2019, the coronavirus SARS-CoV-2 began spreading around the world and causing disruption in both daily life and healthcare systems. The disease is estimated to have caused more than 6 million deaths worldwide [WHO]. The pandemic and the global reaction to it severely affected the world economy, causing a significant increase in global inflation rates, unemployment, and the cost of energy commodities. To stop the spread of the virus and dampen its global effect, it is imperative to detect infected patients early on. Convolutional neural networks (CNNs) can effectively diagnose a patient’s chest X-ray (CXR) to assess whether they have been infected. Previous medical image classification studies have shown exceptional accuracies, and the trained algorithms can be shared and deployed using a computer or a mobile device. CNN-based COVID-19 detection can be employed as a supplement to reverse transcription-polymerase chain reaction (RT-PCR). In this research work, 11 ensemble networks consisting of 6 CNN architectures and a classifier layer are evaluated on their ability to differentiate the CXRs of patients with COVID-19 from those of patients that have not been infected. The performance of ensemble models is then compared to the performance of individual CNN architectures. The best ensemble model COVID-19 detection accuracy was achieved using the logistic regression ensemble model, with an accuracy of 96.29%, which is 1.13% higher than the top-performing individual model. The highest F1-score was achieved by the standard vector classifier ensemble model, with a value of 88.6%, which was 2.06% better than the score achieved by the best-performing individual model. This work demonstrates that combining a set of top-performing COVID-19 detection models could lead to better results if the models are integrated together into an ensemble. The model can be deployed in overworked or remote health centers as an accurate and rapid supplement or back-up method for detecting COVID-19.

    Impact and Reach

    Statistics

    Activity Overview
    6 month trend
    10Downloads
    6 month trend
    16Hits

    Additional statistics for this dataset are available via IRStats2.

    Altmetric

    Actions (login required)

    View Item View Item