Regmi, YN ORCID: https://orcid.org/0000-0001-6588-7683, Mann, JK, McBride, JR, Tao, J, Barnes, CE, Labbé, N and Chmely, SC (2017) Catalytic transfer hydrogenolysis of organosolv lignin using B-containing FeNi alloyed catalysts. Catalysis Today, 302. pp. 190-195. ISSN 0920-5861
|
Accepted Version
Available under License Creative Commons Attribution Non-commercial No Derivatives. Download (1MB) | Preview |
Abstract
© 2017 Elsevier B.V. In this work, FeB, NiB, and FeNiB nanomaterials were examined as catalysts for catalytic transfer hydrogenolysis (CTH) using supercritical ethanol (sc-EtOH) as the hydrogen donor and reaction solvent. The earth-abundant alloys were synthesized using simple aqueous chemical reductions and characterized using ICP-OES, XRD, and STEM-EDS. Using acetophenone to model the desired catalytic reactivity, FeNiB was identified as having superior reactivity (74% conversion) and selectivity for complete deoxygenation to ethylbenzene (84%) when compared to the monometallic materials. Given its high reactivity and selectivity for deoxygenation over ring saturation, FeNiB was screened as a lignin valorization catalyst. FeNiB mediates deoxygenation of aliphatic hydroxyl and carbonyls in organosolv lignin via CTH in sc-EtOH. A combination of gel permeation chromatography, GC/MS, and NMR spectroscopy was used to demonstrate the production of a slate of monomeric phenols with intact deoxygenated aliphatic side chains. In total, these results highlight the utility of CTH for the valorization of biorefinery-relevant lignin using an inexpensive, earth-abundant catalyst material and a green solvent system that can be directly derived from the polysaccharide fraction of lignocellulosic biomass.
Impact and Reach
Statistics
Additional statistics for this dataset are available via IRStats2.