e-space
Manchester Metropolitan University's Research Repository

    Non-viral, Tumor-free Induction of Transient Cell Reprogramming in Mouse Skeletal Muscle to Enhance Tissue Regeneration

    de Lázaro, I, Yilmazer, A, Nam, Y, Qubisi, S, Razak, FMA, Degens, H, Cossu, G and Kostarelos, K (2018) Non-viral, Tumor-free Induction of Transient Cell Reprogramming in Mouse Skeletal Muscle to Enhance Tissue Regeneration. Molecular Therapy, 27 (1). pp. 59-75. ISSN 1525-0016

    [img]
    Preview
    Accepted Version
    Available under License Creative Commons Attribution Non-commercial No Derivatives.

    Download (1MB) | Preview
    [img]
    Preview
    Supplemental Material
    Available under License Creative Commons Attribution Non-commercial No Derivatives.

    Download (1MB) | Preview

    Abstract

    © 2018 The American Society of Gene and Cell Therapy. Overexpression of Oct3/4, Klf4, Sox2, and c-Myc (OKSM) transcription factors can de-differentiate adult cells in vivo. While sustained OKSM expression triggers tumorigenesis through uncontrolled proliferation of toti- and pluripotent cells, transient reprogramming induces pluripotency-like features and proliferation only temporarily, without teratomas. We sought to transiently reprogram cells within mouse skeletal muscle with a localized injection of plasmid DNA encoding OKSM (pOKSM), and we hypothesized that the generation of proliferative intermediates would enhance tissue regeneration after injury. Intramuscular pOKSM administration rapidly upregulated pluripotency (Nanog, Ecat1, and Rex1) and early myogenesis genes (Pax3) in the healthy gastrocnemius of various strains. Mononucleated cells expressing such markers appeared in clusters among myofibers, proliferated only transiently, and did not lead to dysplasia or tumorigenesis for at least 120 days. Nanog was also upregulated in the gastrocnemius when pOKSM was administered 7 days after surgically sectioning its medial head. Enhanced tissue regeneration after reprogramming was manifested by the accelerated appearance of centronucleated myofibers and reduced fibrosis. These results suggest that transient in vivo reprogramming could develop into a novel strategy toward the acceleration of tissue regeneration after injury, based on the induction of transiently proliferative, pluripotent-like cells in situ. Further research to achieve clinically meaningful functional regeneration is warranted.

    Impact and Reach

    Statistics

    Activity Overview
    6 month trend
    450Downloads
    6 month trend
    254Hits

    Additional statistics for this dataset are available via IRStats2.

    Altmetric

    Actions (login required)

    View Item View Item