e-space
Manchester Metropolitan University's Research Repository

    Event-based text mining for biology and functional genomics

    Ananiadou, S, Thompson, P, Nawaz, R, McNaught, J and Kell, DB (2014) Event-based text mining for biology and functional genomics. Briefings in Functional Genomics, 14. ISSN 2041-2649

    [img]
    Preview

    Available under License Creative Commons Attribution.

    Download (602kB) | Preview

    Abstract

    The assessment of genome function requires a mapping between genome-derived entities and biochemical reactions, and the biomedical literature represents a rich source of information about reactions between biological components. However, the increasingly rapid growth in the volume of literature provides both a challenge and an opportunity for researchers to isolate information about reactions of interest in a timely and efficient manner. In response, recent text mining research in the biology domain has been largely focused on the identification and extraction of ‘events’, i.e. categorised, structured representations of relationships between biochemical entities, from the literature. Functional genomics analyses necessarily encompass events as so defined. Automatic event extraction systems facilitate the development of sophisticated semantic search applications, allowing researchers to formulate structured queries over extracted events, so as to specify the exact types of reactions to be retrieved. This article provides an overview of recent research into event extraction. We cover annotated corpora on which systems are trained, systems that achieve state-of-the-art performance and details of the community shared tasks that have been instrumental in increasing the quality, coverage and scalability of recent systems. Finally, several concrete applications of event extraction are covered, together with emerging directions of research.

    Impact and Reach

    Statistics

    Activity Overview
    6 month trend
    285Downloads
    6 month trend
    299Hits

    Additional statistics for this dataset are available via IRStats2.

    Altmetric

    Actions (login required)

    View Item View Item